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Abstract. We study two-dimensional Brownian motion in a periodic system of traps using 
conformal transformations. The system is periodic in the x and y directions. We calculate 
the ratio of the drift along the y-axis to the drift along the x-axis. The drift of the Brownian 
particle is induced by conditioning and by the asymmetry of the system of traps. Finally 
we 6nd the placement of traps which gives the maximal drift ratio. 

1. Introduction 

Brownian motion in the presence of traps is a problem related to various physical 
phenomena, e.g. diffusion limited reaction [ 1-31, diffusion limited aggregation [4,5], 
fluids in porous media [6,7] and diffusion of photons in a random or turbid media 
[8]. Here we would like to consider a two-dimensional (ZD) Brownian motion in a 
periodic system of linear absorbing traps, as shown in figure l(a). The period of the 
system of traps is nQ in the x direction and nn in they direction. The distance between 
the lines of traps is v and the size of a gate between the traps on a single line is P. 
Here P, Q and n are parameters, satisfying n Q >  P ;  we consider only integer n in 
orckr !o :!mp!ify cnmp.~!e!iocs. Whenekre-r !hc B r a w ~ i e ~  !rz;ec!ory hi!$ B b!a& !In- 
(trap) it is absorbed, so it can only move through the gates. The Brownian particle, 
conditioned to hit the line x = -a without being absorbed, will have a steady drift 
induced by the conditioning and the absorbing traps. The easy way to visualize how 
the absorbing traps induce drift is to consider the one-dimensional ( ID)  case with one 
absorbing barrier on a line. I n  this I D  case, the single absorbing barrier effectively 
repels the centre of the probability distribution for a conditioned Brownian particle. 
In our ZD system, the centre of the probability distribution for a conditioned Brownian 
particle will move in the direction of the solid line, indicated in figure l ( a )  for a 
particular case of n = 3. 

The problem we pose here is: for a given integer value of n, what are the values 
of P and Q which maximize the ratio of the drift along y-axis to the one along the 
x-axis? This ratio, which we denote A, is equal to tan 0, where the angle 0 is shown 
in figure l ( a ) .  Note that in the particular case of n = 1.2 the drift along y-axis is zero 
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Figure 1. ( a )  The periodic system of traps with period nQ along the x-axis and period nn 
along y-axis for a particular case with n = 3. "he size of the gate is P whereas the distance 
between two neighbouring lines of gates is n. The solid line denotes the direction of the 
drift of the conditioned Brownian panicle. ( b )  The basic unit of the structure shown in 
( a ) .  A double stripe with a single gate in the middle. The dashed lines indicate the channel 
formed by the gates shown in ( a ) .  eo is the inclination of the channel formed by the gates 
(tan So= n/Q). 

due to the symmetry of the trap system. Thus the first non-trivial case is obtained for 
n = 3. In order to study the problem we will employ the conformal invariance of 
Brownian motion [9], i.e. the invariance of Brownian motion under local rotations 
and local changes of spatial and temporal scale. The conformal invariance property 
has been a working tool in the case of 2~ critical systems [lo] and in ZD polymer 
systems modelled as self-avoiding random walks [ll]. Here we will use this property 
to obtain various probability densities for our system, by applying analytic mappings 
(conformal transformations) of the complex plane onto itself. In this way we can 
transform a complicated system of traps onto a much simpler one, where all the 
interesting probability densities are easy to obtain, and then transform it back to our 
original system. 

The paper is arranged as follows. In section 2 we will use conformal transformations 
to obtain the density of the hitting (probability) distribution (or density of harmonic 
measure [12]) for the stripe shown in figure l ( b ) .  In section 3, we use this density to 
compute those of the hitting distribution and the stationary probability distribution 
for the conditioned process. The results and the discussion are presented in section 4. 

2. Density of hitting distribution 

From now on it will be convenient to use the complex variables z = x t iy. From figure 
l ( a )  we see that the basic building block of our system of traps is a double stripe with 
a single gate in the middle, as shown in figure l(b).  Consider where the Brownian 
trajectory, starting from any point in this gate, will for the first time hit any of the 
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black lines forming the boundary of the stripe. Let h(z, z')  dz' denote the probability 
that it hits in the interval z'*dz'/2, starting from z. Here z = x +  ?ri for some x E (0, P), 
and z'has the form w+2?ri or w or w +  Ti, where w is real. The function h so defined 
is called the density of the hitting distribution, or DHD. A way of computing this density 
is shown in figure 2. The simple family of conformal transformations (analytic map- 
pings) shown there maps the stripe onto a circle [13]. The density of the hitting 
distribution must transform accordingly since Brownian motion is conformally 
invariant [!4J For !he clrde, YYP knew by symme:r;. :h: h(z ,  z') = !/(?r/z - z ' / ) ,  where 
/ z  - z'l= r is the radius of the circle, z corresponds to the centre of the circle and z' 

Figure 2. A family of conformal transformations mapping the double stripe with a single 
gate in the middle onto a circle. Only the case P = l o g 2  is illustrated. Other cases may be 
treated in a similar way. We choose Ihe branch of the square root for which we have 
& = e x p ( ( l / 2 ) l o g r )  and Im log z E ( O , 2 n ) .  The point A is mapped successively onto A , ,  
A i ,  A , ,  A, and the same remark applies to B. C, etc.  We have B = x + i r i ,  B , = y ' I T ,  
B,=J(I-e ' ] (Z-e ' ) .  I m B , = J ( e y - I ) ( 2 - e ' ) .  E , = I ,  E , = I / f i .  E,= 
i / J 2 ( e ' - i ) i 2 - e ' ] ,  E , = - l / ( i +  l/J2(e'- I ) i 2 - ~ ' ) 1 ,  Gi = I. G,= l / J ( e ' - l l ( 2 - e ~ ] ,  
G4=-l/(i+1/J(c'- 1](2-e')]. Other values may he obtained by symmetry. 
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lies on its circumference. In general, if the DHD for system 0 is fO(z ,  z') ,  and the 
transformation w = g(z)  maps system 1 onto system 0, then the DHD for system 1 is 

Using the transformations shown in figure 2 and some elementary scaling we arrive 
at the following formula for h(z, z'), for the stripe shown in figure 1( b )  (here x E (0,  P)):  

h ( x + a i ,  w + 2 a i ) = h ( x + a i ,  w)=f4(x, w) (2.2) 

i fw<O 
i f w > P  

h ( x + n i ,  w + a i ) =  

where 

exp WJ-1 +exp x JI -exp x +  c2 

2n(exp x + e x p  W)JI +exp w J1 +exp w + c2 
h(X, w) = (2.4) 

exp WJ-1 +exp x J1 -exp x +  c2 

2n(exp x -exp w ) ~ 1  -exp w J1 -exp w + c2 
f4(x, w) = (2.5) 

and 

C = V G p = i .  

The factor of 2 in (2.3) comes from the fact that the trajectory can reach the middle 
line in the stripe shown in figure I (b)  from two sides. 

A more physical interpretation of DHD, h(x+2ni ,  w+2ai),  is that as the solution 
of the diffusion equation for a density with a single source inside the gate at x + 2 n i ,  
and with the boundary condition of zero density at the black lines (this is analogous 
to the problem discussed in [3]). Our function h(x+2ai ,  w+2ai )  is proportional to 
the norm of the current at the boundary at w + 2 a i ,  which is equal to the gradient of 
the density field [15] at this point. 

In the next section we will use the DHD to calculate the density of the conditional 
hitting distribution (DCHD). The process is conditioned in such a way that all its 
trajectories reach the line x = -m without hitting a trap. 

3. Density of conditional hitting distribution 

The renormalized probability that the Brownian trajectory starting at I will eventually 
reach the line x = --CO without hitting the trap is denoted p ( z ) .  This function satisfies 
the following equation involving the DHD (see figure 1): 

F ( x + n i ) =  1 dw h ( x + n i ,  w-Q+nkQ)p(w-Q+nkQ) 
*=-m I P  0 

+ I dw h ( x +  Ti, w +  Q +  nkQ + 2 a i ) p (  w + Q +  nkQ+Zni) 

\"* d w h ( x +  Ti, w +nkQ+ ai)+( w +nkQ+ ni). 

h = - m  0 

+ (3.1) 
X ; - - m  

k I 0  
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This equation can he interpreted as follows: the trajectory, which starts at a gate at 
point z = x + vi,  will reach infinity without hitting a trap, only if it first reaches one 
of the gates located on the neighbouring lines or on the same line. The chance of 
reaching the line x = -m without hitting another gate is negligible. The probability of 
reaching a point z' in a new gate is given by h(z, 2'). Once in the new gate the trajectory 
has a new probability p ( z ' )  of reaching infinity, which depends on the location of the 
hitting point z' in the new gate. The traps and the starting gate (corresponding to k=O 
in the third term of the left-hand side of (3.1)) are of course excluded from the sums. 
Let x , y e ( O , P ) .  The ratio of r ( z )  at z = x + n k Q + v i  to ~ ( z ' )  at z ' = y - Q + n k Q  or 
z '=y+Q+nk 'Q+2v i  or z '=y+nk 'Q+vi  is given as follows: 

exp(A(Re(z - 2')). 
dz') Y b J )  

Equation ( 3 . i j  constiiuies a deiiniiion of the Function y ( x )  and the constant A. Because 
y ( x )  is defined up to a multiplicative constant, we additionally impose a normalization 
condition of y ( x ) ,  i.e. 

jop dx y ( x )  = 1 (3.3) 

Both the constant A and the normaiized function y ( x )  have to be determined from 
(3.1). If A satisfies (3.1) together with some y ( x )  so does -A. We choose the negative 
A because the system is conditioned to reach line x=-m. The positive solution 
corresponds to the trajectories which reach x = m. This symmetry is due to the inverse 
symmetry of h. Equation (3.2) can he justified rigorously; here we only note that this 
equation implies the exponential spatial rate of absorption. Finally the density of the 
conditional hitting distribution is 

(3.4) 

Equation (3.4) follows from the definition of conditional probability [16]. This new 
density, h,(z, z'), corresponds to the class of all trajectories (conditioned Brownian 
p,rvL&>o L',,, w,,,c,, IGLICII 1LL"L"LJ W l l l l " " ,  "'LL"1& 'I L"p.  l l l r  C V I I U I L L V l l b "  Y I V W I I I ' I L I I  

process has a stationary probability distribution for hitting points in any single gate. 
Its density a ( z )  satisfies the following equation: 

-_---"- r171\ ... L:-L -..--h :-f-;t., ... :.L-..t h:++:..- trl- The .-n-A:+;n..eA Drn ...- :"- 

a ( w  + vi) = lop dx( f h,(x+ vi,  w -  Q + n k Q )  
X=-m 

L-2 + 1 h,(x+vi, w+Q+nkQ+2rr i )  
X=-m 

)=-CO 

X f U  . .  

together with the normalization condition for a ( z ) .  i.e. 

j o p d x a ( x + v i ) = I  

(3.5) 
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This quantity tells us how the hitting points of the trajectories of the conditioned 
Brownian process are distributed in a gate. Then the drift A =tan 0 (figure l ( a ) )  is 
defined as: 

A =  V I H  (3.7) 

where V is the drift along y and H is the drift along x. They are defined as averages 
over the trajectories of the conditioned Brownian process between consecutive hits of 
the gates, namely, 

V =  -a f 1' 1"' d x  dwh,(x+ mi, w -  Q+nkQ)a(x+ ai) 
k=-m 0 

+ a  1' Iff d x  dw h,(x+ai,  w + Q + n k Q + 2 a i ) a ( x +  a i )  (3.8) 
k=-m 0 

and 

H = f I ' lo' d x  dw h,(x+ a i ,  w - Q+ nkQ)a(x+ ai)(w - Q +  nkQ-xj  
r=-m 0 

+ f lop lop d x  dw h,(x+ wi, w + Q +  nkQ+2mij 

x a ( x +  a i ) (w+ Q +  nkQ -x )  

k=-m 

+ f 1' 1"' d x  dw h,(x+ mi, w +  nkQ+ wij 
k=-m 0 

~~ 

k + 0  

x a ( x +  a i j (w+ nkQ-  x). (3.9) 

Of course the summation as in the case of (3.1) runs over all the gates except for one 
( k Z 0 ) .  In the next section we present the results of numerically solving (3.1)-(3.9). 

4. Results and discussion 

We performed calculations from n = 3 to n = 50 in increments of 1 and from n = 50 
to n = 200 in increments of 10. For larger values of n the numerical difficulties vitiated 
the calculations. For each n we found the values of P and Q for which the ratio A 
was maximal. The results are summarized in figure 3 (figures 3-5 refer to the case of 
the maximal drft  ratio). In figure 3 ( a )  the maximal value of A =tan 0, minus tan Bo= 
w / Q ,  is plotted against n. For large n we find the following asymptotic relation for 0 
and Q corresponding to the maximal drift ratio: 

(4.1) 
w 

tan 0 = - - 6  
Q 

S =0.075*0.008. (4.2) 

Note that tan 0 (figure I(a)) is almost equal to tan 0,) (the angle 0, is shown in figure 
l (b j ) .  Equations (4.1) and (4.2) and figure 3(a)  show the correction to this equality. 
For large n, Q is rather small and when n goes to infinity, Q goes to zero (figure 3(b)). 
Thus in this limit ( n  =a) 6 constitutes a negligible correction. This correction cannot 
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Figure 3. ( a )  The maximal drift ratio, tan 8 (angle 0 shown for n = 3 in figure l ( o ) )  minus 
tan 8, (angle 8, shown in figure I (b ) )  versus n. Their difference reaches asymptotic value 
of S =0.075*0.008 for very large n. For eye guidance the discrete points ( n  is integer) 
have been joined by a continuow line. ( b )  The ratio of Q to the distance between the lines 
oftraps, w, versus n for the maximal drift ratio. ( e )  The ratio of the  size ofthe gate, P, to 
the distance between the lines of traps, w, versus n for the maximal drift ratio. ( d )  The 
ratio of the size of the gate, P, to  the size o f  the trap, n Q -  P, versus n far the maximal 
drift ratio. 

be neglected for small n as can be seen from figure l(a),  where the system of traps 
and the line of drift have been presented for the case of n = 3. Without the correction 
the drift would follow a channel of gates without crossing the traps. In figure 3 ( c )  P 
versus n is shown for the distribution of traps which give the maximal drift ratio. 
Finally figure 3 ( d )  shows the ratio of the size of the gate, P, to the size of the trap, 
nQ - P for the maximal drift ratio. For all n studied, we find the maximal drift ratio 
when the size of a trap is about ten per cent larger than the size of a gate. This gate 
size-trap size ratio is a non-monotonic function of n. First, it grows for 3 < n < 7, 
attaining a local maximum at n = 7. Then it decreases down to the local minimum at 
n = 30 and finally it grows very slowly for 33 < n < 200. Numerical uncertainty does 
not allow us to draw conclusions regarding the exact dependence of this growth on 
n. Figure 4 and figure 5 show the constant A (equation (3.2)) and the density function 
a for a single gate, respectively. The constant A is negative and is a non-monotonic 
function of n. It has a local maximum at n = 30, at the same place as the minimum of 
gate size-trap size ratio P / ( n Q -  P )  (figure 3 ( d ) ) .  Then it decreases very slowly with 
n. The density function a ( x )  is very asymmetric with respect to the centre of the gate 
for small n, but evolves quickly towards a symmetric distribution. I t  is essentially 
symmetric by n = 100. 

In summary we have studied two-dimensional conditioned Brownian motion in a 
periodic system of traps. We have determined the distribution of traps which maximizes 
the ratio of the drift along y to the drift along x. In order to do so we had to calculate 



2470 K Burdzy er al 

-0.45 

A -0.50 

-0.55 

50 100 150 200 
n 

Figure 4. The parameter A versus n for the maximal drift ratio. 
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0 

FisureS. The evolution, with n, of the stationa~distribution for the conditioned Brownian 
process in a single gate far the maximal drift ratio (figures 3.4) .  Here x measures distance 
within the gate and P, far a given n, is equal to its value shown in figure 3(c) .  Dotted line, 
n = 3, dashed line, n = 10 and solid line, n = 100. 

the densities of various probability distributions, using conformal transformations. We 
hope that both our results and the presented method will be helpful for future studies 
of ZD Brownian motion in various systems of traps. In  particular we hope that our 
results will find applications in the physical problems mentioned in the introduction. 
Diffusion limited aggregation, percolation, and diffusion in porous media are all 
situations in which particles are moving in some region with microscopic (local) barriers 
either absorbing or reflecting or the combination of both [15]. In models where the 
distribution of traps is completely random as we believe would be the case for porous 
media, it is hard to calculate the stochastic properties of the system. We give here a 
simpler model where the system of traps is distributed periodically in space and where 
certain iheoreticai predictions can be  made. w e  nope to extend our anaiysis io more 
complicated distributions of traps including random distributions. Then we hope to 
make some definitive predictions for the physical systems such as diffusion limited 
aggregation or diffusion in porous media. 
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